
A Diffusive Load Balancing Scheme for Clustered Peer-to-Peer Systems

Ying Qiao
School of Information Technology and Engineering

University of Ottawa
Ottawa, Canada

yqiao074@site.uottawa.ca

Gregor v. Bochmann
School of Information Technology and Engineering

University of Ottawa
Ottawa, Canada

bochmann@site.uottawa.ca

Abstract—Node clustering is an effective solution for
achieving good performance and high reliability for peer-to-
peer (P2P) systems. To improve the performance of a
clustered P2P system, it is important to balance the service
load among the clusters in the system. In this paper, we
describe a diffusive load balancing scheme for clustered P2P
systems, which dynamically adjusts the size of the clusters,
by moving nodes among the clusters, based on their service
demands and node resource capacities. Our simulations show
that the proposed load balancing scheme significantly
improves the performance of a P2P system in terms of
balanced available capacity.

Keywords-Load balancing; diffusive load balancing; peer-
to-peer systems; distributed algorithms; dynamic resource
allocation; performance management; server clusters;
clustered peer-to-peer systems

I. INTRODUCTION

P2P systems become popular with their scalable
architecture, flexible organization and low cost; one
question is whether these systems could host services, for
example, web services. Services are provided by servers
in a client/server system; it is important for a server to
assure the quality of its service to its clients. Because the
nodes in a P2P system are highly dynamic on their on-line
time and widely heterogeneous on their resource capacity,
currently, P2P are mainly used for applications that are
able to tolerant interruptions, e.g., file sharing,
downloading, or video delivery. The ability of a P2P
system to consistently provide high quality services is
questionable.

Node clustering is an effective approach that can
achieve high reliability and managed performance in a
dynamic P2P system. However, currently, the resource
capacity of clusters has not been considered in the design
of clustered P2P systems, while it is possible that some
service requests experience long delays while resources in
other clusters are idle.

Load balancing has been proposed to fairly distribute
service requests to resources and thus improve the overall
performance of a system. By using an effective load
balancing scheme, a system can balance the load among
nodes, and the failure rates of its service requests are
largely reduced [2].

Intuitively, the performance of a clustered P2P system
can be improved with load balancing. The load balancing

should be performed at both the intra-cluster level and the
inter-cluster level, hence, not only the response times of
different requests for the same service (serviced by
different nodes within a given cluster) would be balanced,
but also requests for different services (serviced by nodes
in different clusters) would have similar response times.
As the intra-cluster load balancing has been intensively
studied, this paper focuses on inter-cluster load balancing
and proposes a diffusive load balancing scheme, called
directory-initiated scheme, for reorganizing nodes in the
clusters according to their capacities and the loads
experienced by the clusters.

In the proposed scheme, each cluster works as a
directory and periodically checks the load statuses of its
neighboring clusters. According to this collected
information, a cluster could balance the loads in its own
neighborhood by moving nodes from lightly loaded
clusters to heavily loaded clusters; in this way, a heavily
loaded cluster would obtain a higher capacity to serve its
requests. As neighborhoods of clusters overlap and cover
the whole network, global load balancing will be achieved
through such local balancing within each neighborhood,
such that all clusters will obtain a processing capacity
corresponding to the load of their service requests, and the
overall service quality will be uniform.

The remainder of the paper is organized as follows.
Section 2 and 3 review related work on load balancing for
P2P systems and discuss the benefit of load balancing in a
clustered P2P. Section 4 discusses in detail the proposed
load balancing procedure. Section 5 presents simulation
results to evaluate the performance of the load balancing
scheme. Section 6 contains the conclusions.

II. RELATED WORK ON DYNAMIC LOAD

BALANCING IN P2P SYSTEMS

Load balancing faces challenges coming from the
characteristics of P2P systems. First, the size of a P2P
system is large. To deal with the large size, distributed
architectures, e.g., tree [7], distributed directory [2],
random probing [8], and skip list [9], are proposed to
achieve global balance.

Second, the nodes in a P2P system are not replicas and
requests cannot be executed in any node. To perform load
movement, P2P load balancing techniques may place
nodes among the ranges of the object space (node

placement) [8, 9] or place objects among the ranges of the
node space (object placement) [2, 6, 7].

Third, a P2P system is a dynamic system with churn. It
requires that the load movements should be determined
dynamically according to the current load. Dynamic load
balancing techniques, whose decision components collect
the load status of the system and, from time to time, make
load balancing decisions, can capture well the dynamics of
P2P systems [2, 7, 8, 9].

Some load balancing schemes require building extra
associations on top of the overlay networks. A k-ary tree
[7] requires (n-1) connections for aggregating and
disseminating load statuses, and a skip list [9] uses a total

of)log23(2 nn −− connections for ordering nodes at
multiple levels according to their load statuses. These
connections are maintained during the life time of the load
balancing procedure requiring extra messages and
processing power. Also, when the overlay network is
experiencing churn, nodes and connections of the overlay
network are highly dynamic. The load status reports
received at a decision component could become stale or
incorrect because of these fast changes. This could
directly affect the performance of load balancing.

Therefore we propose a scheme using existing
connections in a clustered P2P overlay network, where
each cluster balances the load in its neighborhood. This
eliminates the messages for maintaining extra connections
and also improves the performance of load balancing
when the system is experiencing churn.

III. CLUSTERED P2P SYSTEM ARCHITECTURE FOR

LOAD BALANCING

Clustered P2P systems may be organized in different
ways: the nodes in the system are grouped into clusters,
which in turn may be organized according to different
topologies, such as tree, hypercube, or just as a flat
cluster.

Different clustering architectures could be adopted for
improving the reliability of a P2P system. [3] proposed a
multidimensional hypercube P2P with self repairing,
where a node in the hypercube is composed of multiple
computer nodes and could be considered a cluster.
Working synchronously, each hypercube node (cluster)
balances the number of computer nodes sequentially with
its neighbors. The hypercube will synchronously
split/merge its nodes when the total number of its
computer nodes is over/under a certain threshold. eQuus
[1] connects clusters with an overlay DHT similar to
Pastry. A cluster will split/merge when its size is
over/under the threshold.

As we indicated before, from the point of view of
resource management, it is not efficient for a clustered
P2P system to arrange computer nodes into clusters
according to the size of the clusters or of the system. We
propose a load balancing technique to organize clusters
according to the amount of service requests and the
capacity of their nodes for this kind of system.

One question here is whether we can apply a load
balancing scheme studied in distributed computing
systems for clustered P2P systems. As P2P systems are
distributed computing systems, one may argue that the
load balancing techniques, including architectures and
algorithms, could always be applied to P2P systems.
Hence, this is the same case for load balancing in
clustered P2P systems.

Another question is what insight we could gain from
load balancing in this kind of system, and what
adjustments should be adopted. These are the intentions of
our research.

IV. DIFFUSIVE LOAD BALANCING FOR P2P

SYSTEMS

We adopt a diffusive load balancing scheme here.
Diffusive schemes were originally studied for massively
parallel systems, e.g., distributed memory multiprocessor
system, or parallel processing system; these systems have
thousands of computing components.

With diffusive schemes, each computing component
works as a decision component, either synchronously [10,
11] or partially asynchronously [4, 5, 12, 14], to keep the
load balanced with its neighbors; iteratively, the loads in a
system will be evenly distributed among the nodes. We
conjectured that a diffusive scheme would well manage
the resources in a P2P system.

Within our proposed diffusive load balancing scheme,
each cluster runs the load balancing procedure described
in subsection B. In our simulations, each cluster initiates
the procedure after a regular, partially random, time
interval. It is assumed that the time required to complete
the procedure is short compared with this time interval.
There is no coordination between different clusters for
initiating the procedure.

For our simulations, we assume a clustered P2P
system similar to eQuus [1]; each node could join any
cluster. We assume that each cluster has a designated
decision node that performs the load balancing procedure
for the cluster. When such a node leaves due to churn, the
other nodes of the cluster will determine a new decision
node.

A. Load Index: available capacity

Any load balancing procedure uses some load index
which is the measure of the load status that should be
equalized throughout the system. Some authors have used
the mean response time of requests for load balancing in
client/server system [13]. There is a direct relation
between the server's available capacity and the mean
response time as we discuss here.

 We assume that the performance of each node can be
described by a queuing model. From the M/M/1 queuing
model and Little's Law, we derive a direct relationship
between the node's mean response time E[r] and its
available capacity: E[r] = 1/available_capacity [15]. This
indicates that if two servers have the same available
capacity, the mean response time of their services are the

same. We conclude that we get a uniform response time if
our load balancing procedure uses as load index for a
cluster the average available capacity of the nodes in that
cluster.

In a clustered P2P system, we assume that the load of
the nodes in a given cluster has already been balanced,
hence, these nodes have the same available capacity.
However, the available capacities of nodes in different
clusters are not the same. Our load balancing scheme
works at the inter-cluster level to equalize the available
capacities of nodes in different clusters.

B. The load balancing procedures

As we indicated before, a node in a cluster will be
selected as decision node and periodically run the load
balancing procedure. Next, we describe this procedure
with its four phases.

Triggering Phase: In this phase, a decision node
invokes a new round of the balancing procedure starting
with the load determination phase. The event that triggers
the invocation could be a timeout event, or the
observation that the load index of the cluster has reached a
static threshold. Currently, we only consider the first case.

Load Determination Phase: The cluster determines its
own load status as well as the load status of its
neighborhood. The neighborhood of a given cluster is all
those clusters that are contained in the DHT routing table
of that cluster. The decision node sends probing messages
to these neighbors, and waits for their responses; a probed
cluster responds with its load index. The
average_load_index (of the neighborhood) will be
calculated according to these responses.

Decision Phase: A dynamic threshold is used to
determine whether a cluster is considered overloaded or
under-loaded. The upper and lower thresholds are
calculated by using the formula: threshold =
average_load_index * (1 +/- bound). The bound is given
in terms of the percentage of the average load index of the
neighborhood. The detail of the decision procedure
depends on the Location policy, which determines the pair
(or pairs) of sender (overloaded) and receiver
(underloaded) for a load transfer:

Directory-initiated: the decision node identifies one or
several receiver-sender pairs in its neighborhood. The
senders are overloaded clusters, and the receivers are
clusters either underloaded or regularly loaded.

Sender-initiated: if the cluster of the decision node is a
sender (over-loaded), then it tries to identify a
corresponding receiver in its neighborhood.

Receiver-initiated: If the cluster of the decision node
is a receiver (under-loaded), then it tries to identify a
corresponding sender in its neighborhood.

Load transfer Phase: The decision node will send a
load transfer request to the receiver of each identified
sender-receive pair. When a receiver cluster receives a
load transfer request, it will select one of its nodes, delete
it from its membership list, and let it join the sender
cluster. It is important that the node movement should not

cause the state of these clusters to be changed to the
opposite, e.g., an under-loaded cluster should not become
overloaded, or, an overloaded cluster should not become
under-loaded. In order to avoid such situations, a receiver
can only transfer out the portion which is above the mean
of its neighborhood.

V. PERFORMANCE ANALYSIS

We investigate the proposed load balancing scheme
through simulation. The balancing procedure run in a
simulator with an overlay network which conducts the
operations of a clustered DHT, including churn through
node joining and leaving which lead to clusters splitting
and merging, and the resulting routing table updates. We
implemented the three location policies described above
and, for comparison, a central directory scheme performed
by a central directory with global knowledge.

We evaluate load balancing procedures according to
two aspects: (1) balancing result, and (2) balancing
behavior. For the first aspect, we look at the standard
deviation of the load indexes of clusters reached by the
load balancing procedure, and the distance between the
minimum load index of a cluster and the average load
index of the clusters in the system, which we call the
delta. For the second aspect, we look at the impact of load
balancing on the system, including the number of node
movements for the purpose of load balancing and the
number of splits or mergers of clusters occurring in the
system. An effective scheme should lead to evenly
distributed loads among the clusters without introducing
too many node movements and cluster splits and mergers.

TABLE I. LIST OF PARAMETERS OF THE SIMULATION

Interval of two consecutive runs
of the central directory load
balancing procedures

Uniformly distributed in the
range 1000 +/- 20% seconds

Interval of two consecutive runs
of the load balancing procedures
for a given cluster

Uniformly distributed in the
range 1000 +/-5% seconds

Total number of nodes 10000
Homogeneous node capacity 10
Heterogeneous node capacity Pareto distribution [100, 5000],

shape = 2, scale = 100 [17]
Number of nodes in a cluster [4, 16]
Base used in the digits of the
cluster IDs

4

Churn per load balancing period :
k

 [0, 100]

Frequency of system status
measurements

Every 1000 seconds

The input parameters for the simulation are listed in

Table I. We assume that the system is in a steady state
where the processes of nodes joining and leaving are
Poisson processes with the same rate. While churn is
defined as the ratio of the state changes per time unit over
the total number of nodes in the system [16], we use a
parameter k defined by k = churn * average load
balancing period, called normalized churn, which

represents the fraction of nodes that have joined or left, on
average, during a load balancing period of a cluster. For
example, when k is 2%, there are 1% of the nodes that
have left and 1% that have joined when the load balancing
procedure runs again at the end of one load balancing
period.

We investigate load balancing for system with
homogeneous and heterogeneous node capacities. For the
homogeneous system, all nodes have the same capacity,
and different location policies are compared. For
heterogeneous systems, Pareto distribution is used to
represent the node capacities, and different selection
policies are compared.

A. Load balancing in a system with churn and
homogeneous node capacities

We have first performed simulations of a P2P system
with low churn. At the beginning of the simulation, the
load for the different clusters is selected such that the load
index of the clusters follows a uniform distribution
between zero and the maximum capacity. This load, for
each cluster, remains fixed throughout the simulation; we
note, however, that when a cluster is split, the load is
shared half-and-half by the two resulting clusters, and
when two clusters merge, the resulting cluster has a load
corresponding to the sum of the two joining clusters.

After a simulation run of 50 measurement periods with
light churn of k = 5%, and no load balancing, we observe
that the distribution of the load index has a long left tail in
a range less than 0 (this means that some clusters are
completely overloaded); in fact, about10% of the clusters
have negative available capacities. This means that the
capacity required for processing the requests exceeds the
capacity of the nodes in these clusters.

TABLE II. COMPARISON OF DIFFERENT LOCATION
POLICIES

 splits mergers
node

moves
std.
dev delta

CD 8.42 3.96 102.8 0.71 2.54

DI 7.67 3.63 123.5 0.55 1.46

SI 8.06 4.23 102 0.83 3.22

RI 7.58 3.75 254.1 0.95 2.09

Then we have done simulations with load balancing

until a stable system state is reached. The results obtained
in the stable states for the different location policies are
shown in Table II. The directory-initiated version (DI) has
better values for the standard deviation and delta of the
available capacities than the sender-initiated (SI) and
receiver-initiated (RI) versions; however, it causes more
node movements than the central directory (CD) and send-
initiated versions. The results also indicate that sender-
initiated location policy can not fully remediate all the
overloaded clusters.

It is important for the load balancing algorithm to
capture the load dynamics in a system. We now show how

the directory-initiated algorithm performs under different
churn rates; we compare it with the central directory
scheme in Table III. The imbalance factor: delta (%) is
the difference between the average and the minimum load
among all clusters in the system, normalized to the
average.

TABLE III. COMPARISON OF CENTRAL DIRECTORY
SCHEME (CD) AND DIRECTORY-INITIATED SCHEME (DI)

UNDER DIFFERENT CHURN RATES

churn
rate% 20 40 60 80 100

CD 1.13 1.66 2.56 3.697 4.56 split%
DI 0.26 0.24 0.48 0.788 1.07

CD 0.59 1.12 1.97 3.421 4.19 merge%
DI 0.05 0.16 0.53 0.741 0.88

CD 2.53 3.92 4.47 6.111 6.53 node mv%
DI 3.84 8.08 11.7 14.03 15.1

CD 0.93 1.11 1.22 1.369 1.63 std dev.
DI 0.52 0.54 0.58 0.604 0.64

CD 86.2 111 115 142.4 183 delta/mean
% DI 44 58.1 63 64.66 70.3

In a system with churn, the directory-initiated policy

always performs better than the central directory scheme.
The central directory version used in our simulation
performs at most one node exchange between a single
sender-receiver pair per measurement period. When the
churn increases, it cannot perform enough node
movements to counterbalance the effect of churn. On the
other hand, the directory-initiated version runs the load
balancing algorithm on average on all clusters during one
measurement period, and each cluster may initiate a node
movement. It is therefore much more responsive than our
central directory.

Both versions have the delta increasing with growing
churn rate. This indicates that a small number of clusters
have not been balanced, while a large portion of clusters
have their load indexes close to the average of the system.
The increase of the delta is much slower for the directory-
initiated version.

To further improve the balancing results of the
directory-initiated version, a smaller load balancing period
could be used, or the sender-initiated scheme could be
started in a cluster when the cluster has an outstanding
capacity shortage. We will investigate these possibilities
in our future research.

Both schemes add extra node movements to the
system. However, we observe that, compared with a
system without balancing, the number of splits and merges
in the system with a balancing scheme are reduced,
especially, with the directory-initiated scheme. When the
churn rate is 100%, in an unbalanced system, there are
13.8% clusters splitting and 14.0% clusters merging; with
directory-initiated scheme, there are only 1.07% clusters

splitting and 0.88% clusters merging in the system. This
indicates that a balancing scheme could maintain the
cluster organization through moving nodes around; this
increases the stability of the clustering structure.

B. Maintaining the stable state in a system with
heterogeneous node capacities

In a system with heterogeneous node capacity, we
compare in the following two selection policies: (a) the
random selection policy which selects a random node
from the receiver cluster for transfer to the overloaded
cluster, and (b) a capacity consideration policy that tries
to select a node with a maximum capacity just sufficient to
increase the load index of the overloaded cluster to the
perceived mean.

We use a Pareto node capacity distribution (as
described in Table I) for the following experiment. We
introduce virtual nodes into the heterogeneous system:
when the capacity of a node is above a certain boundary,
its capacity will be divided into several virtual nodes, and
these virtual nodes will be inserted as members into
clusters that are randomly selected from the clusters in the
system. When such a high-capacity node leaves the system
because of churn, all of its virtual nodes will leave their
respective clusters. The impact of this leaving is therefore
distributed over many clusters and induces much less load
imbalance. For the simulation, we selected 400 as the
upper capacity boundary, which would be exceeded by
6.25% of the nodes, and each of these nodes would be
divided into virtual nodes with a capacity of 200.

Figure 1 compares directory-initiated load balancing
with and without virtual nodes. Without virtual nodes, the
capacity consideration policy is superior to the random
selection policy (Figure 1(a)); however, the load
balancing performance is not satisfactory: the standard
deviation of the load index of the nodes is still large.
After introducing virtual nodes, the standard deviation of
the load index of the nodes becomes smaller.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

S
ta

nd
ar

d
de

vi
at

io
n

 o
f l

oa
d

in
de

x

churn per balancing period

non-vn,random
non-vn,capacity

vn,random
vn,capacity

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

no
de

 m
ov

em
en

ts
 (

%
)

churn per balancing period

non-vn,random
non-vn,capacity

vn,random
vn,capacity

(b)

non-vn: without virtual node, vn: with virtual node,
random: random selection policy,

capacity: capacity consideration policy.

Figure 1. Directory-initiated load balancing with capacity
consideration selection policy under various churn rates: (a) standard

deviation of load index, (b) node movements

Compared to the random selection policy, the capacity
consideration policy causes less node movements (Figure
1(b)). When the system uses virtual nodes with capacity
consideration policy, the amount of node movements is
close to in the case of a homogeneous system (Table III);
we also observe the same trend in the amount of splits and
merges. The advantage of the capacity consideration
policy is clear when the nodes have heterogeneous
capacity.

This experiment shows that using virtual nodes on
extreme high capacity nodes can largely improve the
performance of load balancing.

VI. CONCLUSION

We designed a diffusive load balancing algorithm for a
P2P system with node clustering. The algorithm balances
the available capacity of all clusters in the system. Since
the available capacity of nodes is directly related to the
response time provided to similar requests, the load
balancing algorithm leads to a uniform response time for
all nodes in the system.

This paper investigates the directory-initiated
balancing scheme in systems with nodes of homogeneous
or heterogeneous capacity. When the system experiences
churn, the balancing algorithm keeps the available
capacities of the nodes close to their average. In
heterogeneous systems, when nodes have highly diverse
capacities, a proposed capacity consideration selection
policy is superior to random node selection; however,
when the system uses virtual nodes for extremely high
capacity nodes, the difference between these two selection
policies becomes small.

Generally, load balancing induces extra node
movements into the system. However, the number of
cluster splits and merges is reduced; this reduction
decreases the amount of changes in the routing table. This

means that balancing improves the stability of the
clustered P2P system.

In our future research, we plan to explore the balancing
algorithm under various load distributions, and also
consider dynamic loads with non-stationary arrivals. In
addition, we will try to find schemes for further reducing
the overhead introduced by load balancing and the
associated node movements.

REFERENCES
[1] T. Locher, S. Schmid, R. Wattenhofer, "eQuus: A Provably Robust

and Locality-Aware Peer-to-Peer System," In Proceeding of Sixth
IEEE International Conference on Peer-to-Peer Computing
(P2P'06), 2006, pp. 3-11.

[2] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I.
Stoica, “Load balancing in dynamic structured peer-to-peer
systems,” in Performance Evaluation Volume 63, Issue 3, P2P
Computing Systems, March 2006, Pages 217-240.

[3] F. Kuhn, S. Schmid, R. Wattenhofer, “A Self-repairing Peer-to-
Peer System Resilient to Dynamic Adversarial Churn,” In
Proceedings of the 4th IEEE International Workshop on Peer-to-
Peer Systems (IPTPS), Cornell University, Ithaca, New York,
USA., February, 2005.

[4] Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997

[5] V.A., Saletore, "A Distributed and Adaptive Dynamic Load
Balancing Scheme for Parallel Processing of Medium-Grain
Tasks," Distributed Memory Computing Conference, 1990,
Proceedings of the Fifth , vol.2, no., pp.994-999, 8-12 Apr 1990.

[6] J. Byers, J. Considine, and M. Mitzenmacher. “Simple Load
Balancing for Distributed Hash Tables,” In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS '03),
February 2003.

[7] Y. Zhu, Y. Hu. “Efficient, proximity-aware load balancing for
DHT-based P2P systems,” IEEE Transactions on Parallel and
Distributed Systems, vol.16, no.4, pages 349-361, April 2005

[8] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury:
supporting scalable multi-attribute range queries,” In Proceedings
of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols For Computer Communication.
SIGCOMM '04. ACM, New York, NY.

[9] P. Ganesan, B. Mayank, and H. Garcia-Molina. “Online Balancing
of Range-Partitioned Data with Applications to Peer-to-Peer
Systems,” in VLDB, 2004.

[10] G. Cybenko, Dynamic load balancing for distributed memory
multiprocessors. J. Parallel Distrib. Comput. 7, 2 (Oct. 1989),
pages 279-301

[11] B. Monien and R. Preis, Diffusion schemes for load balancing on
heterogeneous networks, Theory of Computing Systems, vol 35,
2002.

[12] A. Corradi, L. Leonardi, F. Zambonelli, Diffusive Load-Balancing
Policies for Dynamic Applications, IEEE Concurrency, vol. 7, no.
1, pp. 22-31, Jan.-Mar. 1999,

[13] M.-V. Mohamed-Salem, G. v. Bochmann, and J. W. Wong,
“Wide-area server selection using a multi-broker architecture,” in
Proceedings of International Workshop on New Advances of Web
Server and Proxy Technologies. Providence, USA, May 19, 2003.

[14] A. Cortes, A. Ripoll, F. Cedo, M. A. Senar, E. Luque, “An
asynchronous and iterative load balancing algorithm for discrete
load model,” Journal of Parallel and Distributed Computing,
Volume 62, Issue 12, December 2002, Pages 1729-1746.

[15] Y. Qiao, G. v. Bochmann, “Applying a diffusive load balancing in
a clustered P2P system.” in Proceeding of 9th International

conference on New Technologies of Distributed Systems
(NOTERE), Montreal, Canada, 2009.

[16] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing churn in
distributed systems,” in Proceedings of the 2006 Conference on
Applications, Technologies, Architectures, and Protocols For
Computer Communication, SIGCOMM '06. Pisa, Italy, September
11 - 15, 2006

[17] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, I. Stoica,
"Load balancing in dynamic structured P2P systems," INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol.4, page. 2253-2262
7-11 March 2004.

